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Abstract
This paper examines attenuation processes from the view-
point of collision theory, using the optical theorem to connect
attenuation cross-section o and refractivit5 n with diagonal
elements of the T matrix. This approach provides resonance pro-

files (for "natural" lines shapes) of the form

(m2)B  + (w-w,)A

= ¥
T < (w-we)* + (T/72)*
niw) -1 = Ne [ (rlﬁ')A — (W=-0) B - D X
, 2w (w-w,»* + (a)?

where the profile parameters A, B, C, D, T, ®, are given in
terms of atomic matrix elements.

Part I reviews the notion of resonances. Part II summarizes
the relevant results of collision theory, stressing physical
interpretation, and gives a definition for excited (or resonance)
states based on a simple partifion of basis states into two classes.
Part III applies perturbation theory to the calculation of reson-
ance profiles. Part IV applies these results specifically to
the attenuation and refraction of photons by tenuous gases, with

particular attention paid to the profiles of autoionizing lines.
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I. SPECTRAL LINES AS RESONANCES
A. The Nature of Resonance Observations
Rate coefficients or cross-sections for collision processes,
measured as a function of incident projectile energy E, often
show abrupt variations (resonances) as the energy passes some
value EO. Typically, this energy dependence or profile follows

the dispersion formula

(M2)B + (E-E,)A
(E-Eo)* + (T/2)*

QE) = CCE) +

where the background C(E) varies only slowly with energy, and B,
A, Ej (the resonance energy) and I (the resonance width) are
parameters independent of E. (Appendix A discusses several alter-
native parameterh“g; Q(E)). Actual observations are, of course,
influenced by effects of finite sample temperature,density and
thickness -- effects that are treated in the discipline of radia-
tive transfer1 and are here ignored: the present paper concerns
only the "natural" shape of absorption lines.

For inelastic collision processes, parameter A usually

vanishes, and the formula2

(ra) B

Q(e) = C(E)

(1.1)

(e-E. ) + (v/2)* (1.2)
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applies. In observations of absorption spectra, such resonances

appear as dark absorption lines or spectral lines. Observations

of the refractive index usually reveal a profile with B = 0:4

(E-E)A
(E~E,)* + (T2)*

Q) = C(E) +

The explanation of such resonance phenomena in the absorp-

(1.3)

tion and refraction of light traces back5 to the work of Sellmeier6

and von Helmholtz7 (Lord Rayleigh8 pointed out that Maxwell anti-

cipated these results in posing a Cambridge Tripos Exam in 1869).

From a more modern viewpoint, attenuation occurs when an atom in

state A absorbs a photon ¥ to produce the excited atomic state A*: ‘

A+ y > A¥* ,

The excited state subsequently decays by emitting one or more

photons:
A* > A 4+ v .

Since few emitted photons reappear in the direction of the
incident beam, the encounter depletes the photon beam, and an
absorption line develops. (This simplified picture applies only

when the absorbing medium is cool and optically thin.)
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When the energy of A* exceeds the first ionization limit,

decay by electron emission (autoionizationg) may also occur:

In turn, decay by photon or electron emission may occur through

10 . .
several modes or decay channels corresponding to the various

possible states of the projectile and residual atom or ion.

Autoionizing states (also called compound states, resonance
states, metastable states, collision complexes) can, of course,
be formed either by electron bombardment of Af or by photo-

excitation of A:

+ +

A+e\
A

A + e
A*/ [ ]
A+ vy A+ 7y
Not all projectile encounters lead to formation of such compound

states: direct processes, such as photoionization and Thomson

scattering of photons, and Coulomb scattering or potential scat-
tering of electrons, may compete with compound-state formation.

. 12
These excited states, therefore, influence such processes as
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elastic and inelastic scattering of electrons, electron capture

(dielectronic recombinationl3), and photon attenuation. Each

type of observation discloses slightly different aspects of the
compound state., In Eq. (l1.l1), the parameters C(E), B, and A
for a particular resonance vary with the type of projectile,
scattering angle, and type of reaction product observed. The
won the

resonance energy E_ and resonance width I' depend pﬁma”

0
properties of the compound state, not on the mode of formation

or decay. Although I have explicitly described the interaction
of a photon projectile with an atomic target, the conclusions
apply to other projectiles colliding with either atoms or nuclei.
To illustrate how A, B, and C(E) may vary while EO and " remain
fixed, Fig. l14 shows cross-sections for several processes that
can form compound states of the nucleus Si28. One must similarly

anticipate that observations of electron-scattering cross-sections

will not completely determine photon-attenuation cross-sections.

B. Theories of Resonance Phenomena

The conventional quantum theory of atomic absorption-line
profiles15 presumes that the decay of a compound state is not
coherent with the formation process. One may then consider the
decay of a system from a prepared initial state, the compound
state. This leads to a Lorentz profile, Eq. (1.2), with a width

equal to % times the decay rate of the compound state.
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Such an approach is reasonable for ordinary radiative
decay, which proceeds quite slowly on an atomic time scale
(e.g., an electron circles the first Bohr orbit of hydrogen
in 1.5 X 10—16 sec; the mean life of the 2p level of hydrogen
is 1.6 X 10_9 sec). However, autoionization proceeds on a much
faster time scale (typically 10-14 sec) than radiative decay,
and it is no longer evident that formation and decay may be
treated separately. Although it is possible to predict the
position and width of resonance lines by considering the decay
of prepared statesls, a full description of asymmetric profiles
requires examination of the preparation process.

The quantum theory of scattering19 provides a more satis-
factory foundation for a description of absorption-line profiles.
Such an approach ignores unobserved processes, such as the pre-
paration of an unstable state at some precise time, and deals
directly with scattering amplitudes and cross-sections. Energy,
rather than time, is sharply defined.

A number of authors have now developed general formalisms
for describing reactions and resonance processes within the
framework of quantum scattering theory24_32. Although these
authors initially directed their attention to nuclear reactions,
many of their results apply equally to atomic collision processes.
Subsequently other workers have applied and extended these tech-

niques to the study of electron scattering by :-.\toms33-38 and to
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the prediction of resonance energies . For summaries of
electron-resonance observations, the reader should consult the
. . 12 .. 41
recent comprehensive reviews by Burke and by Smith .

Despite this active study of electron scattering, the
peculiarities of photon-induced processes -- autoionization in
particular -- have not been explicitly examined from the viewpoint
of reaction theory. Current investigations of autoionization all

. . 42-45 . .
follow the approach of Fano and his associates > who diagonalize
the Hamiltonian by mixing discrete and continuum states. It is

instructive to see how their results emerge from collision theory46.

Furthermore, the details of resonance attenuation (as distin-

guished from scattering or specific reaction processes) have not
been fully examined from the viewpoint of the "unified reaction
theory."25 In the present article I wish to point out how this
formalism, by providing an explicit connection between profile
parameters and atomic matrix elements, aids the interpretation
of attenuation profiles.

Although nuclear and atomic collision processes may be
viewed as two aspects of a general physics of collisions, they
differ in one important respect. During a nuclear collision, the
target nucleus remains isolated from any disturbance apart from
the projectile. Atomic collisions, on the other hand, occur
while the target atom is subjected to a variety of disturbances

from surraunding atoms. In practice, such disturbances can
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significantly distort the "natural" attenuation profiles of
isolated atoms and any realistic theory of line shapes must
account for the influence of the surrounding medium47. However,
the present paper will concentrate on collisions with isolated
target atoms. The results therefore apply to attenuation by

tenuous gases.
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IT. SUMMARY OF COLLISION THEORY
A. The Scattering Matrix
Scattering theory provides a useful means of visualizing
the atomic processes that are responsible for absorption lines.
One imagines a wave-packet of known properties impinging on a
. . 18-23 .
stationary scattering center. One then examines the waves

that emerge, under the action of the time-dependent Schrodinger

équation:

2 To = HEW® . (2.1)

To describe the evolution of ¥(t), one may introduce some con-
~o
venient set of basis states. These many-particle states, degene-

rate eigenstates of an operator u°,

(HD’ E‘.)q)g ."'O’ S hk)(’-\"'i =1 b) <w"\1‘“> = Sa'b b (2'2)

&~

are labelled by a set of quantities a (both discrete and con-

y &

tinuous) that can completely describe the status of the projec-
tile and the target particles.4
The choice of basis states defines the perturbing inter-

action V, the difference between the actual Hamiltonian H and

the operator H®
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H=8"+V . (2.3)

(Conversely, a choice of V fixes the basis states.) As defined
here, V is entirely responsible for transitions from one basis
state to another during the course of a scattering event.

A typical scattering event begins in the remote past
(t > - ») with a wave-packet projectile moving toward the target
from a great distance. The interaction V is assumed to vanish
when the projectile is far from the atom, so that this initial
situation may be described as a superposition of basis states

representing a definite target state and a wave-packet projectile:

~iE.t /K ~-TH°E /%
T(t—)-w) = A, © "t - € ALY .

As time progresses, the wave-packet moves into the scattering
region and the interaction V alters both the wave-packet and the

s . 0]
target atom. The modified state may be written as2

-2Et /K
T @) = A e Utt, -») Y,

s [ od

where the time-development operator U(t,to) determines the change

in ¥(t) caused by the interaction V. It satisfies the integral
N

(2.4)

3 (2.5)
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equation,2

%
J HY/K Wtk
t

Ult,t,) = L - | &' e Ve U, t.) .

Ultimately, as t > », the wave-packet passes out of the scatter-
ing region. Again the solution Y (t) becomes expressible as a
~

superposition of unperturbed eigenstates of HO:

—iE,t /R
"‘g(t-nb) = Y e S A,

The element S of the scattering, or S-matrix49 gives the com-
ba ~,
ponent wb of the final state ¥(t > ») that emerges from the
[a ¥

initial component wa:
Sba— = <z"'b\ U(ﬂ)-ﬁ) Iq’a.>o

Although the initial and final states wa and wb must be
states for which the system has a projectile at infinite sepa-

ration (so-called open channels or continuum states), during the

collision process other states (referred to as closed channels

or discrete bound states) will become temporarily excited. These
temporary excitations are responsible for resonance processes.
The mathematical structure of U(t,to) contains a description of

all such processes, although this is not obvious from Eq. (2.6).

(2.6)

(2.7)

(2.8)
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B. The Lippmann-Schwinger Equation
As energy measurements sharpen, one ultimately replaces
the wave-packet projectile with monochromatic wave trains; at
a large distance from the target these trains consist of incom-
ing plane waves and outgoing spherical waves. These wave trains

have the form, at all times.

_sEt/h _iHt/%
?(t) = A_¢e ﬂf—': = e SA."?: 3 (2.9)

where Y: is an eigenstate of the total Hamiltonian:50
Lo +
H +V - Ea)Ya =0 . (2.10)

Equation (2.10) and the boundary condition, that scattered
waves should ultimately move spherically outward from the target,

are commonly combined into the Lippmann-Schwinger equation:20

L T R t __VE!|. (2.11)
‘.pof E"Q'lfl"H

This symbolic operator equation stands for an integral equation,

in which 5 > 0" after integration. From an operational stand-

. . 51 . .
point, such an integral means, for an arbitrary function F (E),

4
[ F(ED FLBD o e \ B -E) F(E) (2.12)
1-»0" E_tan-FE, E.-Es .

] v b b
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[}
where § denotes a sum over states excluding these with

b

Eb = Ea (the cauchy principle-~part of the integral over dEb).

Thus the requirement for outgoing scattered waves leads to

the equation:s2

H

o=

+ S Y, <HIVIELDY
E" "Eb

(\ - » 1 R R
_ iw)S(E{EQ b L IViIEDS,

b

(2.13)

53

These eigenstates of H preserve the orthonormality of wa and Wb:

(B \EL> = bap - (2.14)
However, unlike the eigenstates of Ho, these "perturbed" scatter-
ing states do not form a complete set, since they do not include
closed channels (i.e., bound states).26 The wave function for a
bound state is concentrated near the target and so cannot be
observed at large projectile separation.

Equation (2.13) provides an integral equation for the scat-

tering state Y:. It is more convenient to transform that equa-

. . . ey 54
tion, using the definitions

t s G°(E)z g, 3 BTz Erigy

G(E) = EF - H°-V EY-H®

(2.15)

and the identity

i i 1 =
e ¢ Eewe Y E-RV

G(e) =
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into the operator equation

Pz A o+ Gre)V R, (2.17)

This formula places the disturbing influence of the interaction
V into the operator G(E) rather than into the wavefunction ¥].
As a third alternative, one can introduce the reaction

operator J(E),55

J(E) =V + VG(E)V (2.18)
and then write Eq. (2.17) as
+ O, v
Ya = Wa + G (E)Z](E)\I/a . (2.19)

J (E) has the matrix elements

%
T, = <hiTlh> = <HivITL> . (2.20)
The scattering description is now contained in the structure
of the reaction operator J(E), a non-Hermitian many-particle

"effective interaction."

The connection between the S-matrix, and the quantities
(")

Y: or G(E) or J(E), becomes apparent when Eg. (2.9) is rewritten

in terms of basis states:

G SN G B0 G5 GO GP GO G0 ON oW e G G on e o e
J N Y




o ;

*

-18-

Bt /R v
T ) = SA.e S’P.,w.t“i’&.

e

(2.21)

L b

In the limit t > o this becomes20

—igt /& '

C ( ¢

h o - S - - 40 E =% \‘4: T" N

lg‘“(t-»») 3 \)A.e 1‘\', Z.‘I(L‘)b\ b te J 0y '} (2.22)
. b

The scattering matrix of Eq. (2.8) can thus be recognized a320

~1 = - 2w g, -E Ty,
(g-1), = =—aw BR-F) Ty, (2.23)

The delta function é(Ea - Eb) insures energy conservation in the
collision; only matrix elements of S between states of equal
~o

. 56
energy are required.

C. Observable Quantities
The physical content of the S-matrix is best displayed by
~

rewriting Eq. (2.9) as

-i Wt /&
:{:(f».o) = e A, {‘h[i*(i’”‘u]* %S 1° (2.24)

& b¥a

One can then see that the incident component wa gives rise to

a transmitted wave,
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trons
LA = % [1+ (3-1),]
and scattered waves
. geatt N r
119 a = b ?l’,S“_ = b q’. ci'i)\,.,
b#a bda
. trans |, . s s
The transmitted wave wa is altered in phase and diminished

in amplitude compared with wa. Components of the scattered

scatt _, . . . . .
wave wa differ from wa in propagation direction or in angular

momentum or in other quantum-number labels. The requirement

that S be a unitary matrix,20
~o

s's = st = 1 o S(gf)“s,,,_: Shc

]

expresses the fact that, if flux is to be conserved, scatterings

into state Wb must deplete the initial state wa'

With the aid of the formula’l

b(e-E,) = - % | exp [ 4 (E-E)E 1% ]

one can write the probability for a transition a » b # a during

the collision interval (t »> - o to t > w) a520

(2.25)

(2.26)

(2.27)

(2.28)
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Wg-1), \* = = se-e) [T 1" |
[

= wa-t b S‘Jt

This probability increases at the constant rate v If Fa

> b°
denotes the flux of incident projectiles in state wa’ then the

cross section for the process a > b # a, defined as>’

cote of a—>b per target 4

U (a->b)

U

Flux of Projectiles 1

can be written, as is well known,20 232°8

o (a—>b) = 2= 8(E,-FE,) ‘T‘,. \*.

hF

For example, if the labels a and b include the direction of
projectile motion, o(a - b) gives the angular distribution
of the scattering process.
. c s 59-60 .
Macroscopic descriptions of wave propagation commonly
employ an index of refraction (or a dielectric constant) to
express the influence of the propagation medium on the incident

wave. A plane wave propagating along the z-axis through vacuum

has the form

th2
w(l,t) = z"(o)o) exp[_i(hz-wt)] = Q(O)t) e .

(2.29)

(2.30)

(2.31)

(2.32)
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When passing through a uniform medium, the propagation vector
k alters to ﬁk, where.ﬁ,is the (complex) index of refraction.
A thin slab of matter, of thickness dz, changes the incident

plane wave V¥ (z,t) to a transmitted wave plus a scattered wave:

fransd ﬂ) m

h(zt) — % (2¥) 4 (2,t) (2.33)

where

trons
q’ (:t) = 741(0)‘};) exp[i h(e-d2) +iﬁhdzl . (2.34)

The intensity of this transmitted wave diminishes exponentially
with a decay constant (or absorption coefficient) defined as No,
where N is the density of absorbers and ¢ is the attenuation

cross section:

l.q,‘trm (z+dg t) \" = Pt \" exp (- 1kdz .lonmn: )

.3
z |det)l* exp (-Node), (2.35)
Therefore (ﬁt‘ 1) may be written:
n ; No
L= e rn ) (2.36)

The real part, (n - 1), is the refractivity,59 the complex part,

(No/2k), is proportional to the absorption coefficient. For a
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thin slab, the exponential may be expanded as a power series

in dz, giving
w‘h“a\i ~ h -~ J
(2,t) = 4’(1,’;)"1 v+ ik (F-1)dz | .

To connect this description with the S-matrix, one may again
~

use formula (2.28) and write Eg. (2.25) as

zp“““ =_.4; [ {- -% Teo Sét‘} .

a

Here, as in Eq. (2.29), w:rans changes at a steady rate over the

infinite interval [dt. The infinitesimal change of a flux F_
(projectiles per cm2 per sec) passing through a medium of density

N (targets per cm3) may then be written

il—iT *i.-a;l = ‘1«» ik.(ﬁ.—z)dtl.
ﬁ a0 F"

Thus the index of refraction may be identified a561

F{‘ -1 = - E."—-T_:'.:- .
. fRF,

The subscript a denotes the projectile state (e.g., energy and

polarization) as well as the target state.

(2.37)

(2.38)

(2.39)
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Equation (2.42) gives the refractivity

n, -1 = - Et— Rb (Ta.a)
& ik F,

and the attenuation cross section

gla) = - f;_ J’M«(Tac. ).

The conventional proofzo of Eq. (2.42), often referred to as

the optical theorem of Bohr, Peierls, and Placzék,62

on the fact that attenuation is the sum of all the processes
that remove a projectile from state Wa. The attenuation cross-

section is therefore the sum of all possible scattering and

reaction cross-sections,

b

= 2 S 6CE,-E.) | T ¥

W
bFa

Equation (2.42) then obtains when one employs the unitary

relation, Eq. (2.27).

From Eq. {2.40) it follows that, when Taa has the frequency

dependence

(2.41)

(2.42)

(2.43)
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Taa B B -:A
£k, F, - w-w, + z (7B (2.44)

the abosrption coefficient is obtained from

[ (rayB + (w-w)A
- (w-w, ) + (Th)? _l (2.45)

gm () = N

and the refractivity is

() A — (w-w)8
(w -, )* + (ThY

ﬁz(ﬁ"i) = NA—K
(2.46)

These formulas provide a connection between attenuation measure-
ments and refracitivity measurements,63 particularly useful for
autoionizing lines (for which A is generally not zero). They are,
of course, simply special cases of the Kramers-Kronig dispersion
relations64 obtained from the real and imaginary parts of the
equation:

© [ﬁ(u)-i] diw’

o~ - i ) j

When |n| is close to unity, the dielectric constant ¢, and
WA .

polarizability aé may be obtained from65
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That is,
- Z.N._‘la _ T-.A« Y
€.-1 = Wk, F K . amh R Fo

In practice, one usually observes a cross section or
refractivity averaged over some degenerate set of initial
states, say & , which may include projectile polarization
and various angular-momentum quantum numbers of the target.

The relevant quantities are then

. - 2 (T,
T(O) = é S T) = € @ S Fr (Taa)
- a €L q_éQ.
_ : S Ne Qe (Tas)
n(m«) -1 = - {h“:."w‘ N
a €L

where the statistical weight is the number of states included
L

in the set

= = S«

aclR

and N is the total number of targets

N - S N“'
ae @

(2.49)

(2.50)

(2.52)
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Hitherto, attenuation profiles have usually been deter-
mined from Eq. (2.43). Often a particular process dominates
the scattering, and an accurate attenuation cross-section
obtains from only one or two terms in the summation. The
present paper points out the usefulness of Eq. (2.42) as a

starting point for calculations.

D. Resonances
- - . ? »
In principle, the S-matrix (or'Q'or G) contain a complete
~
description of all possible collision processes, but practical
difficulties often intervene when one attempts to extract the
information.
. 66 . . .

As Siegert pointed out, the analytic properties of the

scattering matrix lead to cross-section profiles of the form

of Eq. (1.1). More recently, the Mittag-Leffler expansion67

of a function in rational fractions,

L L
Fey = Fly « L B

n

has been used as the basis for an elaborate parameterization
of S(E) by Humblet and Rosenfeld’.28 While such an approach has
proven fruitful in formal investigations68 it does not by itself

provide a complete prescription for computing the relevant

parameters,

(2.54)
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A second avenue of approach makes use of appropriate
joining conditions for wave functions at the boundary of the
interaction region.sg-71 Here too, the formalism has provided
a useful parameterization of nuclear reactions.

In atomic processes, where the nature of the interaction
between particles is well known, it has proven more useful to
relate scattering amplitudes with matrix elements. To describe
resonance processes, it is only necessary to partition the basis

states into two classes. This partitioning is most easily

carried out with the aid of projection operators72 defined by

L= Pig, P:P, &=) , PR=QP=O.

Quite simply, QY is the component of the state ¥ contained in

some selected subspace (to be referred to as closed channels,

resonance states, or bound states), and PY is the remainder

(to be called open channels or continuum states). The essential

point is that the initial state is contained entirely in PY¥;
QY contains no component of this state. A precise specification
of Q¥ will be discussed below. If we now follow Messiah'~ and

write the Hamiltonian as

H= (PHP +QHG) + (PHQ+Q@HP) = yb, y®

(2.55)

(2.56)
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and use the identity
_ 4 _ L 1 n* - .
€ £t -nl-H*  E'-W T Y- wtop?
gr-ut B eniowt E'-nt

it is easy to verify that75

6P = % (PHQ) (REQ) (2.58a]

e6P = (aeQ) (QHP) Y, (2-580)

Peq = 4, r 3 (PHQ) (@GQ) (avP) 4, (2.58¢)
where76

My = PET%’;:;P' (2.59)
Equations (2.58) express the operator G in terms of the more
restricted operators‘ﬁg and QGQ. In turn, QGQ may be found by
substituting the above expression for PGQ into

Q(E -~ H)GQ = Q (2.60)

to obtain



el B R Yy

=y 1oL
[ - aHa - (awe) ¥, (PHQ) | RGR = Q -
It follows that
-1
Q6@ = Q[E-ang- (@) g (PHad] Q.

. o . .
If now we write H =H + V, and require that basis states be

eigenstates of HO,

PE°Q = QE®P

il
o
.

then we can write the J operator (Eq. (2.18)) as

T= v + V(PGP « PEQR + QGP aca )V

= V+ VBY

L (Vv v)QLE-aHQ -QVH,VQ] @V VH,V),

This equation can be written more succinctly by introducing the

76
operator

Xt =A(e,E) =V +VHY .

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)
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The reaction operator is then written:77

J = &£ + £ Q t at. (2.66)
E-H-Qiq

This equation permits a useful physical interpretation of the

. 7 29 . . N
reaction operator J. The first term,,t, gives scattering 1n
the absence of a selected collection of states Q. Physically,
this corresponds to direct reactions and potential scattering;
X is a many-particle generalization of the optical potential.73
The second term describes the influence of the states Q, and it
gives rise to resonances.

To see this resonance structure most clearly, suppose Q

projects only a single bound eigenstate of Ho, Wn, which is

orthogonal to all remaining states;40
Q = 'wn> <’u'n‘ (2.67&)

(W-e Y¥ =0 (2.67b)

Then the elements of J are

Ghitme) 14> < | £ (B D>
E -e, + <% | £nE)|WD>

Toa = hiLmey > (2.68)

Since matrix elements of L are complex quantities, this expression
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can be written:

Bme) - i An8)

de— = D(“ne) - i‘ C(“.E) +
E- E(B) + 1T (&) /2

If the quantities A(n,E), B(n,E), C(n,E), D(n,E), and

L(ey= en + B <b ltl%>,

T (6) = —2 In <% AL 1H>

vary only slowly with energy over an interval near E = e’ then

(2.69)

(2.70a)

(2.70b)

|

one can speak of a resonance at energy En(en) with a width Fn(en).

More generally, if Q projects out several (or all) closed

channels, the J matrix has the form

Too = %1215 + ) Gh1P£QI% > Ly QIE-HZ£] @ 1%
n,m x KW | PLPIYLD .
The scattering resonances contained in the second term of
Eq. (2.66) are basically "many-channel" resonances that exist
because of the coupling between the incident channel and other
channels. Such resonances include the familiar absorption lines
of atoms. However, another type of broad resonance-like varia-
tion in scattering amplitudes can originate in the potential

scattering term <Wblﬁlwa >. Such single-channel "resonances"

(2.71) |
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or size-resonances can occur at incident energies which permit
an integral number of nodes for the projectile wave function
within a complex potential-well.

Several methods might be used to evaluate Eq. (2.71).
For example, one could obtain the matrix of (E - HC - A) in some
simple basis and then invert this matrix.75 In the present paper,

I shall evaluate Eq. (2.71) by obtaining78 (approximately) states

that satisfy the equation

(8, 1Q(H+£)Q 18> = T8 -7 (hA) T = € bcu . (2.72)

Then Tba becomes

|
(%, | Pt S<D 1 P> |
Tba. = <7“’5‘P,¢‘;P\‘P¢> t ‘ Q‘QK K‘

E-Eu(e) 7 (L) (273
« ;
where EK(E) and PK(E) are given by
E(E) = e, + & <& 1R 18, >, (2.74a)
(8 = -2 Um <8 1 02£Q |3, >, (2.74b)

If Q includes all bound states, then each of these contributes

a resonance to Tba' For simplicity, I shall employ a subscript

notation for matrix elements of i,
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b, = A% PAP TS, (2.75a)
b = <% | PEQ &>, (2.75Db)
_ (2.75c)
tew = <8 1 @iQ 1&>.
Subscripts a and b refer to open channels, subscript K refers
to a closed channel or resonance state. It also proves useful
. o 79
to write tbK and tKa as the sum of two Hermitian parts:
_ @ () _ (0 * R (2.76)
With this notation, Eg. (2.73) reads:
(1) ™) ) )
(tb{:) ity Y(tka +itua )
LIV . (2.77)

In particular, the diagonal elements are

) 2 a) . W, &) 2y, (m
Taa« = tn.a, 4 K ‘tm‘ ' - \ta; "' +2 [tm‘ tkn, +tak ‘Lk‘ 1. (2.78)

E-e -t

K

suppose now that we write this in the form

-z A
Q_T“_ = D—iC +§ BK z [ 3

e +7 (T,
WE . E-E, +7 (N (2.79)
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. by defining the following quantities (all dependent on E = Ea) :
' 4 » )
Ak. ﬂl':“ [ ax Ka. ( )
' 0y 2 G2
' B = o [ \tan " - \tcuc ‘ ] (2.81)
' RFa
|
- -2 n (taa) (2.82)
1 c = .
"
; ' D = Zz & ( taa.) (2.83)
| #F. )
| E, = e, + B (tu<) (2.84)
| l ]"K = -2 dm (tng) " (2.85) |
|
| |
1 ;
L - Then the attenuation cross-section becomes }
‘ ' C z (R/2)B + (E-B) A« |
¢ (a) = +
(E‘Ek)z + (rk /1)1 (2.863)1
| < |
?
' while the refractivity is ‘
‘ N (/a) Aw - CE-Ee) B
l n(a) - i = — — D »
1k, (E-E.D)* + (T /2) (2.87aj
’» w
Near an isolated resonance one term dominates the summations
l in Eq. (2.81) and we can write
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(/2)B, + (E-E)A«

- 2.86b)
G‘(d) - CK + (
(E-Ex)? + (T /2)*
NA‘ ( (FKIJ)AK + (E—EK>B& )
nay -1 = —_— - DK
2k (E-E)? + (N/2)* (2.87b)
where, with the assumption that all other resoncance widths FN
are much smaller than the separation between levels,
c c Z Ay . Bu (2.88)
L E.-E, 2(E - E,)
N#K
\
i
B AT
Do = D + — - =t . (2.89)
Ek- gp 2 (EK— Eu)
N7k

The incident energy E = Ea must be apportioned between projectile
and target. Initially, the target is in a discrete state (typically

the ground state) with energy EI, so that E may be written

E = E (2.90a)

I + eprojectile )

The projectile energy e takes a continuum of positive

projectile

values. For reactions induced by a single incident photon, this
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expression reads

E=E_+ fn . (2.90Db)|

Thus one obtains, for photons,

(T R) B + (w-wyp) fhk

- + ’ (2.51)
glaw) = C B (o)« (T/2)*
N (Wh)Ae - (w-o3g ) b Bi D. ¢
- — w
n (a,w)-1= 2w * * =T
) {‘z (w- wk!) + (rk /2)
(2.92)

where EK— EI = ﬁwg; .

The label a is retained as a reminder that these quantities
depend on properties other than photon frequency: they depend
on initial target-state and on photon polarization.
It should be noted that the matrix element of (E - u° -QtQ)-l

takes the simple form

<$ .y ds = _t
! Toweara | o E - ey - tex (2.93)

only if CDk satisfies Eq. (2.72). As I discuss in the following
section, this condition generally requires one to diagonalize the
matrix of V between degenerate (or nearly degenerate) states.

If this diagonalization is not carried out, the denominator of

|

|
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Eg. (2.85) no longer retains this simple form; the matrix

elements become80

c(E-H-Q1 .
() —:2—— 13, 5 = [ eofactor (E-H-@LQ) ],

2.94
E- H-Ql@ determinant (E- H°- Q@ 1Q) ( )

For example, if two levels @K and @L lie close together, Eq. (2.86)

gives the elements

L 1 2.95a)
Bl ———— 18, > = (2.
o E-U-Qt0 - E-€, -t - to '1(5)
1 (e)
2| E- H°-Q1tQ 18> = — q (2.95b)
B-ep - bt - Bwl )(B) )
where
tic
(E) = e '
'\ E-e._t. (2.96)
Near the resonance frequency E = ey the correction to tKK
becomes approximately
t (E) g tKLtLK . )
<] e.-e, (2.97)

Thus the correction q(E) cannot be neglected if the coupling
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tLK is large or if the resonances are closely spaced. Mower77
discusses this point in detail.

It should also be noted that the present approach predicts
a resonance width which is a property of the resonance state alone
rather than a width which depends on the initial state as well.
(In the Weisskopf-Wigner th.eory15 the observed width is the sum
of widths for initial and final states.) This is because I assume
the initial state persisted indefinitely in the past, i.e. has a
negligible width. A more refined approach would include the decay
of the initial state.

The task of reaction theory is two-fold: first, to provide
a realistic parameterization of cross-sections; and second, to
offer means of predicting and interpreting the parameters. The
preceeding equations are an attempt to fulfill the first task and
to connect observed profiles with atomic matrix elements. In the

next section I shall address the second task.
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III. PERTURBATION THEORY APPLIED TO COLLISIONS

A. Formulation

While Eq. (2.78), like the Lippmann-Schwinger equation,
is an "exact" equation, actual calculations require the intro-
duction of approximations; the many-body scattering problem
is no more soluble then the many-body Schrodinger equation.
Perturbation theory (suitably formulated) has proven gquite
accurate in conventional calculations of atomic properties,
including radiative effects, and one anticipates this accuracy
will carry over to scattering problems.

For simplicity, I shall neglect degeneracy for the
moment, and will omit identification subscripts on states.
This deficiency is removed in section III-C.

We seek a solution to the Schrdodinger-like equation

QW +v +vRV -E)ad =o (3.1)

(where € is a complex number) in a basis of eigenstates of "°:

(H-e)% =o. (3.2)
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As a first step, the operator X = Yﬂév must be exéressed in a

calculable form. This can be done by use of the expansion

P
Ay = i
P Et-H*
P (3.3)
- P P b o o.e
Et- Hov ¥ E*_Hove"—H°V
The application of conventional Rayleigh-Schrodinger per-
turbation theory81 to Eq. (3.1) by use of the expansion
(3.4a)
§ < q:(o) y @ ) s @ ) + eee

£ = e + e® + e® % ... (3.4b)

and the condition (for states of the same energy)
(o) (™ -

T He™S> = o, (3.5)

leads to the sequence of equations:
o (n) ell) (h-1)
o:(H-—e)q + (v- )@
-3
sV v - e®) g
EX-H® (3.6)
P P N (n-3)
p(vE—vE v - Ve .

Eue et-H®
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It then follows that, to second order, ® is given by:

) -4 4 [ .
d = 9@+ Q@ v v ve? + & v P ye®
e-H* e-n’  e-H* e-H° &'-wW
where Q(O) is an eigenstate of the unperturbed Hamiltonian,

(Ho’e)q(°) -0

b

(0)

0
and Q removes the ¢ component of &:

QD - 1 - \ce(a)> <(?(°3 l .

To second order, t© is

€ = Lg@| H°+v 4>

(g v v v Py 199>
e-H Er-u°

From the discussion in part I, it is clear that interest
in the 7 matrix extends beyond the calculation of positions and
widths of resonances. Details of resonance profiles depend on

the elements of £ between a resonance state & and a continuum

(3.7)

(3.8)

(3.9)

(3.10)
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state ¥. Equations (3.3) and (3.7) give these, to second

order, as

<l A 1dy> = Aivig®>

VA ViR s + (v P v gy,
e-H° Bt-H°

Third-order corrections to £ and {¥|%|® ) come from matrix

elements of the operator

v ( & PvY
<e-H°v+E*-H’ ) ’

(3.11)

(3.12)
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B. Basis States

At this stage, it is useful to introduce a set of basis
states -- eigenstates of H° —- and to show how the partition
into P and Q may be made.

I shall assume that H® is the sum of Hermitian single-

particle operators82 (i),
H® = z fa)
0
whose degenerate eigenstates satisfy the equation

(he)y- e Yu, Gy =o0.

The product of such single-particle states, the product-state

U  (3) Ug (@) - u;(u) 3

is an eigenstate of 8° with eigenvalue

1]
m
+
m
-+
.
-+
m
h
.

e, ) 5

Basis states can be constructed from linear combinations of

(3.13)

(3.14)

(3.15)

(3.16)
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degenerate product states; an N~-particle basis state has the

form

lad = E (aldp--.g) u‘(t)upéz)--- us(n).

I shall assume this construction has incorporated the require-
ments that |a ) be symmetric in boson coordinates and anti-
symmetric in fermion coordinates.83 The construction may also
include the coupling of single-particle angular-momentum, but it
does not include configuration mixing. The label a specifies
single-particle quantum-numbers and collective quantum-numbers.

Single~-particle states fall into two classes, distinguished
by their single-particle energies.84 When ea is negative, it
takes only discrete values; the wave function ua(£) then falls
off exponentially at large distances, and one has a bound single-
particle state. When ea is positive, it can take any value;
the wavefunction ua(i) then describes a wave train at infinity,
and one has a continuum single-particle state.

Given a collection of product states, one can recognize
those products that are composed entirely of bound single-
particle states (to be denoted by labels k, m, or n). I shall

call this subset the closed-channel states, and write

(3.17)




*

Q = E InS <nf - (3.18)

n

The remaining collection of states (to be denoted by labels

a, b, ¢, or d) comprise the open-channel states,

p

]

S \C> (Cl (3.19)

[

Each open-channel state |c ) has at least one single-particle
continuum-state; each closed-channel state |n > is built from
bound single-particle states.

As Part IV will discuss, the inclusion of photon projec-
tiles introduces no fundamental difficulty. Let the index 7y
stand for frequency, polarization, and propagation vector.

Then each free-~field photon satisfies an equation of the form

(c‘phoion (¥) - €y ) u, =o (3.20)

where ey = nmy. The Hamiltonian Ho can then be written

o . = ° ° :
o E hpctice O * S‘ebmton (1 = Ho + Meiation (3.21)
¥

i
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and the preceding arguments apply. The basis states must now
be taken from a photon Fack-space.ss"86 That is, one requires
product states with no photons, one photon, two photons,..., etc.
The label a on a basis state must now list the number of photons
of each type Yy that are present in the field, as well as specify
the state of the atom.

If we are concerned with processes that occur when a single
photon encounters a target, then we can define closed channels
as those product states that have no photons; all product states
that have one or more photons are then open channels. The sum

over continuum states becomes a sum over atomic states and a

sum over photon states,

S = S S , (3.22)

atom ¥

while the sum over discrete states and resonance states is

simply a sum over atomic quantum-numbers.
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C. Resonance States

(0)

The zero-order approximation ¢ to the resonance state ¢

. . . . o .
is, like the basis states, an eigenstate of H . However, it

does not follow that ¢(0)

must be a particular basis state. The
basis states are, in general, degenerate. Therefore the zero-
order states must be chosen to diagonalize the matrix of V
between degenerate states.87 A partial diagonalization is accom-
plished by constructing antisymmetrized angular-momentum basis
states (Eq. (3.17)), but further configuration degeneracy may
still remain.88 In principle, one can redefine the basis states
to coincide with these zero-order states. In practice, it is

often useful to retain the original basis states and introduce

mixing coefficients:

q":’ = k) = Z kS (kIK) -

R

The mixing coefficients (Klk) which connect the zero-order
resonance states |K ) with the original basis-states |k ) are

obtained by solving the equations

LKkIVIK’S = O $ K EKS

KIVIKS = Z ki) <RIVIRS (1K)
113

(3.23)

(3.24)




» ;
¥
+

-48-

between degenerate zero-—order states. Matrix elements to zero-
order states will be denoted by capitals K, L, M, N; elements
to the undiagonalized basis states will have lower case labels

k, 1, m, n.

The first-order correction to cpéo) s as prescribed by Eq.
(3.3), is
¢ _ \n> {nIvikD 1y (niviey Celkd
< (3.25)

n

Thus the resonance state is, to first order,

/

¢ T 9@ L9l - i (elk) | In> +> ny <nVIE> L. (3.26)

w- En
k n

The resonance energy, to second order, is

B (B) = e, 4—? (ki) Celk’) L (RIVIR'>

Rk’
! ] , (3.27a)
+ E (RIVInY VIR S Lkividy (IVIRD
en'en E 'Ed
n d
while the resonance width, to second order (using e(3)), is
p (g) = mgg(e E )E (k1) (R 1K) {RIVIeH X (3.283)
ke
, Z4lviks
le'> Le\vidy
) 2R {clvinddniV
¥ Jlelviw’d ¢ E _.____.._.—-— o —
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The appearance of E (the initial energy in the scattering
problem) in these expressions for Ek(E) and FK(E) means that,
as formulated here, the resonance parameters depend on incident
energy. However, this dependence may be neglected over a suffi-
ciently small energy-interval near E = e .

In turn, the perturbation equations give the direct-reaction

background from the approximations

]
~ Lalv|dy<divib)
ce,,[{“(e)] = <alVvib) +S — ’ (3.29)
d

& - ivie> e IV iIby
N . [ tap (E)] ® _ar 6(e-E.) {a

(3.30)
and the resonance-scattering properties from
’ |
nHdniVIRDS
t""(g) - (k) {dalVvik) + 4“\‘_’_‘__?__. (3.31a)
ax €e- €n
b n . e
N 8<a\v|a><a\\L_> :
1 E-Ea
(3.32a)

" (i)(E) _ _wg 6(E-E,) } Cxlw) {q\Vlc) Le\ViR) .

ak

| %
<



, - 5
]
.
v

The preceding expressions simplify slightly if one takes
matrix elements to the zero-order resonance-state |K > rather

than to the basis states |k ). The equationg then become:

!

r
iKkivi 4)‘
E. = g+ <Lkivikd +ZKKW‘">| ) ’ (3.27b)
4

E-E,

]

K = 2n Ss(l‘:-&‘) <kivied Lel VIK>
’<ClVIn><'\\V|k> 18 {civ 18> LIk L (3, 28D)
L 4
+1& e, ~-¢€ E"’EJ 3
| 5 n ‘
n i
/ [}
t("') - (Q\V\K> } E(a\V\n){n\Vlk) . S(A\V\d><d\V|k>’ 3.31)
ar - —— . :
n €n - En fl 4 |
£ - o \sG-g) alviey Lel VKD .
N (3.32b)

c

To lowest order, the resonance parameters AK and BK of Egs. (2.80)

and (2.81) are given by:
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>
K
"\

TR {<Kalviky Sscz-s¢)<x\V\c><c\VM> 3 (3.33)
HF,

[4

w¥. (3.34)

©

B = = {l(alvluw‘ —w? \QS(E-S.)<Q3V1°><‘\V‘K> \Il }

To lowest order, the backﬁround for an isolated level (Egs. (2.88)

and (2.89)) comes from90

alviny*
c - L 2«8%(5-2‘)‘(4\V‘°>‘1 + y Hetviny , (3.35)
K KEL (B -Eyu)*

c V¥R

it

D E3 LalVia} 8'441\/“)1 +§'|<alvw>|‘ .

3 KF E-Ey E-E, (3.36)
N¥K
The preceding formulas, taken with Egs. (2.79)-(2.80) of
the previous section, provide a link between observed resonance
profiles and calculable matrix elements. With the perturbation-
theory approach, each matrix element may be interpreted as the

amplitude for a particular type of process.91 Specifically:
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{alv|a ) gives forward elastic scattering,

{a|v|e > [describes potential scattering (or direct
reactions) from one open channel directly
to another open channel,

{a|V|K D)) (describes capture from an open channel to

<a|$Tk >} la resonance state,

{K|v|c >) (gives the decay-of a resonance state into an

(k}ch >§ open channel.

By examining the matrix-element structure of the quantities

AK’ BK’ FK, etc. (Egs. (2.80)) one can picture a sequence of

elementary events that "cause" AK, BK’ T etc.

K}
For example, the first approximation to the resonance

width is2>

K

A Ssce-m [<elvik)y . (3.37)

[+

This is the sum of terms 27d(E - E.) |<c|V|K.>(2, each of which

(0)

gives the probability per unit time for decay of the state Py

. . . 9
into a continuum state wc’ conserving energy.
The direct-reaction contribution to the attenuation cross-—

section is
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2
c = = SS(E-Ec)|<“'V‘°>‘v (3.38)
¥,
(-3
This expression T€7 is simply the first Born-approximation

for scattering from incident state Wa to all possible continuum
. 93
states wc’ conserving enerqgy.

Similarly, the first part of BK’

X | <Lal vIik>H

gives the probability for a transition from the discrete resonance

state wéo)

into the continuum wa (or the probability of capture
from wa to @éo)). The parameter AK, as well as the negative part
of BK’ depends on the matrix element

g-£.) LalVviey .,
8¢ (3.40)

This quantity vanishes unless appreciable scattering occurs from
the continuum Wa into the continuum wc’ at the same energy.94
One can then see that a finite AK or negative BK indicates
appreciable continuum scattering. An illustrative example occurs
in the profiles of neutron-attenuation cross-sections. Only the

s-wave part of an incident neutron beam suffers appreciable elastic
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scattering: the angular-momentum barrier diminishes contact
between the nucleus and higher partial waves. Hence only

s-wave resonance-profiles display the marked asymmetry associated
with a finite AK parameter.95 Figure 2, taken from the work of
Peterson, Barshall, and Bockelman,96 illustrates the striking
difference between s-wave and higher partial-wave resonances in

the attenuation of neutrons.




IV. PHOTON COLLISIONS
A. The Hamiltonian

As a specific example of the preceding general results,

consider an atom interacting with a radiation field.97 The
Hamiltonian for this system splits into four parts:
o -]
H Ha\:om ¥ Hra& oo \/"3& (4.1)

© + ~ describes the isolated atom, Ho describes the free
atom rad

radiation-field, and Vrad governs the interaction between radi-
ation and the atom.

The "unperturbed” atomic Hamiltonian,

-] . .
Hatom = E g"eiee‘tvon ) ’ (4.2)

%

is implicitly defined when one chooses a set of single-electron
states or orbitals, ua(i). (Typically, these orbitals are hydro-
genic or Hartree~Fock orbitals.) Then s is the remainder of the
isolated-atom Hamiltonian. When magnetic interactions and other

relativistic effects can be neglected, this Hamiltonian is
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. i (P? ) . e
Hatom + & = Er-S iy (4.3)

z i 3.(;'

In practice, ar describes part or all of the inter-electron

coulomb repulsion; with a more exact atomic Hamiltonian it

. . . 100

will include spin-dependent terms.
The radiation field is a collection of photons, each dis-~

tinguished by an index 7y denoting frequency, polarization, and

other properties. A photon is characterized by an electric

field € (r)ﬁba magnetic field ¥ (r), or a vector potential A (r):
Y A Y ~ANY

£, (L) = — & Ay (D

~

3 A (L) = curl As (2. (4.4)

The free radiation-field has |¢ (r)[2 equal to |¥ (r)|2, and
Y A Y

the Hamiltonian may be written86’98

n

4w

Hiy = % S i | Bl Sﬁpmo, ). (4.5)
3

1

Wtih neglect of magnetic interactions, the interaction between

photons and electrons may be described by the term101

Vew = }: S er;« & (L), (4.6)
L {
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B. Photon Fock-Space

The photon Fock-space85 consists of basis states which

have no photons,
In> = (no0> ,
states with Ny photons of type v,

In, Ng D>

2

and states where various types of photons are present,

In, Ny ooo Nygreee le, Ny -

b

e,

iy = lc,ed 5

Here, ard in the following section, labels n and c refer to

discrete and continuum atomic states.

tical photons,

()™ /(N 1)

i

N, >

satisfies the equation

A state with Ny

3

iden-

(4.72)

(4.7b)

(4.7¢c)

(4.8)
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(h

photm (x) - €y ) \N,> Ee (4.9)

with € = N 1w .

Y Y

In writing sums over possible states of the system, one
must include states of the radiation field. The previous con-

tinuum summation, Eg. (3.22), becomes a summation over the atomic

continuum and a summation over the photon states:

IS ERRRRR

+SS S + E S 5 + ¢ o & *
c ¥ ¥ n ¥ ¥
We are concerned with collision processes that occur to
. i (0)
a target atom in the,discrete-state wI . For a photon pro-
jectile, the incident state wa of preceding sections becomes
b, = 1T, 1,7, (4.11a)

one can then define the closed channels as those discrete

atomic states with no photons,

T L Y v x n }
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¥ o= In, 0, > = Ind. (4.12a)

L]

More generally, one may wish to consider processes initiated

by I‘I,y identical photons:loz

ko = 1T, Moo | (4.11b)

It is then more appropriate to require that all closed-channel

states include a photon factor |(N - 1)7 >:

Y o= e, (N-2) D, (4.12b)

|

o
The operator Hra

a is diagonal in Fock-space, and has the

non-zero matrix-—elements86
{a, Ny | Hoy la, Ng> = Ny by . (4.13)

(The continuum label a may be replaced by a discrete state

label n.) The operator €V(r) has non-zero matrix-elements only
~Y A

between states that differ by the presence of one photon:103
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b 5 Ny \ gb () \ a,(N+),> = ‘“m ‘}:m-'ac’w, <b\Li, () lay (4.14a)

* 4.14b
b, (N1) ] EL (D) a Ny>= 1 Neri Jamkcrew, <blUg (€1 la)> ( )

(the labels a and b may be replaced by n and m). Here U'Y (r)

is a solution to the vector Helmholtz-equation,

eorl Uy (ny + (%) U,(¢) = © (4.15)

normalized to satisfy the condition
jdL U, - Uh o = s, (4.16)

Usually the U‘Y (r) fields are chosen as transverse plane-
~ ~
waves. The label y then specifies the propagation vector k
~

(withlkl= w/c) and polarization <€ (with k * € = 0):

~y
ik

Uep (LY = ¢ ¢ (4.17)
T (aw )72

With this choice of normalization, the incident flux F
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(assuming one incident photon) and the summation over photon

indices become

Fﬁ' = c, - Z Swh jda (4.18)
€

im

v

where ¢ is the speed of light.
However, atomic transitions occur between states of well-
defined parity and total anqular momentum. It therefore proves
. . . 104-108
useful to take the Uy(r) fields as transverse multipole-~fields
~ Y o
characterized by frequency w, parity (€ for electric multipoles,

M for magnetic multipoles) multipole order £, and angular-momentum

component |L:

> w (4.19a)
Doma, (08 = [v:um] © 4 (%) L),
vL\l.““e“a)& (f).n.) = %; CJR.L L\anm.l); (r,_n.),

(4.19Db)

where L is the orbital angular-momentum operator. For such
~

fields one hasloe-109 (assuming a single incident photon)
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(4.20)

Copgpummmeny
o\&'

wi
F = F z  ———
wWE 2 u wmly ew? (2es) :

o [~—1
-;l\/"

and also105

(4.21a)

- 28(en)
L'Q.wi,l); (¢) = [ l 4 (% (m‘ (4.21b)
Near the atom, where kr << 1, the electric-dipole or €1
field predominates, and matrix elements of the operator

( 2w

b e
Uues, (% F g 24 (4.22)

in

are responsible for the major transitions. Here {e u] =e
(4 V)

+1’
e, e are unit circular-polarization vectors.l()ﬁ-107 To simplify

0 -1
the following discussion, I shall consider only €1 p‘hotons;ll0
the summation over photon states then reduces to a summation over

three polarizations and integration over frequency:

J ;
S - E[%’ . (4.23)
¥ M
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This approximation is equivalent to setting exp(ikr) % 1 with

plane-wave photons.

It will prove useful to introduce the atomic dipole-

moment operator

|
- = r-» € |
19 - §1 -1 ’ R~' E; ~ro=t (4.24)
g and to employ units such that
; = Y ® 13T, (4.25)
i where o is Sommerfeld's Fine-Structure Constant.111 Only the
| matrix elements linking one-photon states with two-photon and
no-photon states will be required here; these are: j
<a,’ i, l Vraa ‘ b, o;) = i“sz‘3/3ﬂ’ <°“D}A\b>, (4.26a)
‘” . ¥
; <b, Ox ‘ Vrad ‘0.;,1;> = ';“sz:/h ‘{b‘Dy ‘°'>, (4.26Db)
(b, 2¢ | Ve |, 44> = B LS, 0, ) Ve 12, 3> (4.26c)

(¢
i
v
i
3
1]
'-L
¢
1
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C. Atomic Basis _States
The energies of resonance states are determined largely

. . o
b atomic Hamiltoni :
y the ic Hamiltonian Hat +nr

E (wy = (ki H:t."lk> + {Klnv Ik

(4.27)

+E' Kkl S’ kel >

- e, - e, / E. - By

Radiative corrections, such as the Lamb shift, are small and

will be neglected here.lll This expression applies both to

autoionizing and non-autoionizing states.

The quantity Ek(w) depends slightly on excitation con-
ditions (the incident-photon energy ) through the occurrence
of Ea = E_ + o in the last summation. For photons near the

I

resonance enerqgy o 2w __, one may substitute e

KT or E_ for Ea

K K
in this sum, and so recover the usual second-order perturbation
expression.

In principle, the task of constructing autoionizing states

d - " 3

does not differ significantly from the familiar task of con-
structing ordinary excited states. In an isolated atom, the
major portion of ~ comes from the inter-electron Coulomb repul-

sion, possibly modified by an effective central-field potential.




3
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Additional smaller magnetic interactions, such as the spin-orbit

interaction, may also need to be considered.

These remarks suggestll3 that one should choose the atomic

basis states to be eigenstates of SZ, the total spin; Lz, the
~o N,
total orbital angular momentum; Jz, the total angular momentum;
(o ¥
and J = J , one component of J.
b A o] ~

Many treatises discuss the construction of bound many-

particle angular-momentum states (coupled states) from products
114

of single-particle states (or orbitals). I shall assume the
orbitals have the conventional form
Ugyge () = R, (r) B (2) Y, (00) (4.28)

where Yzm(Q) is a spherical harmonic, xu(s ) is a spin-3 function,
“~

and Rez(r) is a radial function. When € is negative (so that

ueuﬂm(i) describes a bound orbital), it takes only selected dis-

crete values; Reg(r) may then be written Rng(r), where n is an

integer. I shall assume the bound functions satisfy the condition

fr‘dr Rpo () Ry () = S0 (4.29a)
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although orthogonality is not essential. Wwhen € is positive,
it can take a continuum of values. I shall assume the continuum

functions satisfy the energy-normalization condition

fr’ér Racn Re'z (r) = 5(e-€) (4.29Db)

and that they are orthogonal to the bound functions,

fr‘ér Reg 0 R, 1) = o. (4.30)

The expansion coefficients of Eq. (3.17), which connect a coupled
state with uncoupled product functions, are products of vector-

. .. 114-115 .
coupling (Clebsch-Gordan) coefficients; the single label K,
hitherto used to identify the set of quantum number labels, must

now be replaced by labels KSLJM:

(k la-oo p) —>  (ksLomlintmu - nlglmin’ ). (4.31)

To first order, these states have energies given by diagonal

. o
matrix elements of H +ac
atom
o
Evsiom = <KSLTM | Ao L KSLTMD

4 KSLI M ).
{KsLasm| arl ’ > (4.32)

e . ‘ T ETE T
oh G Gb G2 O O Gf U8 G OB U0 Gp b 60 G a0 G ..
i »
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o . ] _ o .
If H . om 1S independent of spin and if the magnetic-interaction

contributions to s can be ignored, this energy is the so-called

113 .
"term—energy, " 3 independent of J as well as M:

KL | Haeee 1| KLY KSL
EKSL - < i Hatorn | . {xst Lt v i > ] (4.33)
{2+t {25+t J2L+t

Here I have employed the reduced matrix116 of a scalar operator,117

T
MO Lsmey = TAONTY (4.34)
VaT+i
However, when one considers excited states of heavy atoms, the
fine-structure splitting of different J-levels can no longer be

ignored. One then employs the formula

{xsL3 |} v’ I ks3>

vaT+1

- E (4.35)

Besiy kSk
to account for effects of the spin-orbit interaction #'.

Once one has constructed such coupled states of an N-electron
atom, one can readily construct (N + 1)-é1ectron states by coup-
ling an additional orbital onto a "core" of N electrons. When
electrostatic interactions dominate, one follows the Russell-

Saunders prescription113 to construct states of the form

G G UA G G 00 G0 WA oW O AR D o 68 G o 0D ..
]
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| (S.L.) na SLTMD (4.36a)

where SoLo refers to the core, and n/ refers to the added

. 118 . e
orbital. However, when the fine-structure splitting of

the core becomes appreciable and the added orbital is highly
excited, it is more appropriate to use the so-called J-K coupling

schemellg'-120 (also called J/ couplingIZI)

{Sele T )ne [k1TMD (4.36b)

In vector language, the orbital angular-momentum £ has been
coupled onto Jo to form K, then the spin 3 has been coupled onto
K to form J. Such a coupling scheme becomes particularly appro-
priate as one examines higher terms in a Rydberg series pro-
gressing toward a series limit in a heavy atom; for example,

the two series

(‘P,, ) e, (%P, Ynt .




The construction of continuum angular-momentum states
proceeds in the same way, since continuum orbitals differ from
bound orbitals only through their radial function. Conventional

coupling procedures then provide a Russell-Saunders continuum,

1(S.Le) el SLTMD (4.37a)

or a J-K continuum,

|
|

(5L, T. Y el IxTTM D, (4.37D)

The choice of a coupling scheme is largely a matter of con- i

venience, since the two schemes are related by a unitary

transformation.llg—120
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D. Resonance Widths

Since the perturbation Hamiltonian V = Vrad + v has been

separated into two contributions, the resonance width FK

- Zw.bn[tKK] also splits into two parts: a radiative-decay

width Férad) , and an electron-decay or autoionizing width
Féelec) . To lowest order, the radiative width for €1

transitions is (from Egs. (4.26))

ad) 21’()3 a
Vf; (w) = migs(slm-s;w,)( e ) IKet D, 1nd]
n ¥

2,.3
+1«SS 1 3¢ ,w-Ec—w,)(ﬂ-_;“;_"_‘:t )\(k | D, 1ed \27
< ¥

while the autoionizing width is

(elec)
FK (w)

,«S (eq veo- € WLk 1w LT,

<

as usual, |n > and |c > denote discrete and continuum atomic
basis-states respectively.
The radiative width expresses the possibility that the

(0)

resonance state Px will decay to some other atomic state,

either discrete or continuum, with the emission of a photon.

(4.38)

(4.39)
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The radiative width is finite for all excited bound states,
since it is always possible to satisfy energy conservation in
photon decay to a lower-lying bound state, if one accounts for
higher elgctric- and magnetic-multipole radiation and for
multi-photon decay.

The autoionizing width expresses the possibility for an
energy-conserving decay to an ionized state plus a free elec-
tron; this condition can be met only when a level lies above
the first ionization-limit.

a. Radiative widths122

To write the radiative width in a more familiar form,
we can employ angular-momentum states. The sums over photon
polarization, up = - 1, 0, + 1, and magnetic quantum-number
M=-J,..., + J, are then readily carried out with the aid

of the Wigner-Eckart theorem:los-lo7

ZI K, A 1D, I T M
A M

s kT g e T il

i ——————————

"

2T, ¢4 .3

Here I have introduced the statistical weight Iy = 2JK + 1.

- o8 O G S0 ¢ N o G0 8 T s Gk o5 o o G5 an..Gh
B ]

(4.40)




G OB U &) U Gh G0 N B0 S TP =0 ) & O e O ..

Ed

»

-7 2=

The square of the reduced matrix element <{K|| D|| n > is often

denoted by i(K,n), the transition strength of Condon and

Shortley:113

o
~
F
3
o
$
/~
F 3
-
jv
==
=
7/
.

Summation over the energy of the emitted photon then yields

the formula

ad 3 3 A
r(rk)(w) = 4‘5‘ E (Wep+ ) KB D Undl
9

£ Cerrert a1 RIOF

E.< trtw 3
The sums over final states |n > or |c ) are such that @ =
EI - En and W, = EI - Ec are positive., The sums include all

states that lie below EK in energy, and those with energy up

t .
o EI + W

The preceding results presume that the incident state has

(0)

th
R en

only a single incident photon. The resonance state ¢
has no photons. For intense beams of radiation, one may con-

sider an N&-photon incident state |I,N§ >. The radiative width

(4.41)

(4.42)
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for the resonance state ‘K,(N—l)y > then becomes proportional
to N&, according to Eqs. (4.14). This proportionality expresses
the fact that, in an intense field, induced transitions as well
as spontaneous transitions will deplete an excited state. The
intense radiation shortens the lifetime of the excited state,
and thereby increases the width.

Near the resonance frequency w = w__, the radiative width

KI

takes the familiar form of the sum of the Einstein transition-

(0)
K

both discrete and continuum: that is, the natural width is the

probabilities from discrete state ¢ to all lower-lying states,

inverse of the lifetime TK of the excited state:17

(rad) - kdD and?
P ey =2 ¥ = (t)! = Z 55(“""’3‘____-—-< =7
e
En{T,
+ S %(“wkc)s ‘<K‘9~“C>‘z.
13
£<E,

However, away from resonance, the frequency dependence of PK(w)

123 (0)
Pk

becomes significant. For example, when is the lowest-

(0)

lying excited state and QI

is the ground state, the radiation

width becomes

(84 3 D ud
R O R RLLE L2

I

]
~~
sle
“
L
ﬂO(
.

K

(4.43)

(4.44)
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If we introduce the oscillator strength for bound-bound

a.bsorptionl2

1o, KIlRtedP o %
I® a; 9

-+
(1]
(1] o

and the oscillator strength for bound-free absorption,

e | 2o, KILRIOF
JE 3 b)
e 31
the radiative width at resonant frequency may be w::ittenl25
I, = - 2d (w0 ): f - 2u (e, ) dfic
LI Kook dt,
En<Ey T.CE,

@Y ko S (0. 9o e

—

3.‘ dE.

1!
»
1 %
D o
~1
x
3

En<Fy €. <8,
In general, the width is the sum of oscillator strengths to

several lower-lying states. However, the radiative width of the

lowest-lying excited state, at resonant frequency, is simply]'26

y 2 Y aog)? KRt
K 3

2 = - _8_111 ":KI .
s —2ad o) far M a)

(4.45)

(4.46)

(4.47)

(4.48)
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Far below this resonance, o << mKI’ the width of this lowest

state becomes

(rdd) 2 (4:0)3 ‘pn
N w = - T ==
® Wy (4.49)
b. Electron widths
To lowest order, the electron width is
(elec) 2
= - k ’
r K (W) - ar S S(El tw-E ) ‘< l i l C>‘ (4.50)
4
In the next approximation, the width is
elec
e )(w) = v S 6(k; +w - B, ) <klwled [ Lelmvlk)> 4
kK
(4.51)
+E<c|mu>4nwn¢> , S clvldy ol (-
- E-%4
- € -€n f
Thus, the autoionizing width is governed by the matrix element
BlE;+w —E ) (k| ~le>
(4.52a]

which describes the autoionizing transition from the excited state

wéo) to a continuum state wc whose energy is Ec = EI + w.
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In the Russell-Saunders coupling scheme, these elements

take the form

(B v+ —E. ) L SLTM | A {u’(Sle) €2 SLUI'M D>,

When external fields are absent, the largest part of A comes
from the inter-electron coulomb repulsion. The non-zero matrix

elements then become

5(Ep 4w ~E ) («5L ol 2 (Slo) €2 SL> )

st+1 J2L+i

From this expression, one obtains White's127 selection rules

for autoionizing transitions:

AS =O AL=O AT =0 , apacity = O .

That is, autoionization occurs when an excited state can mix
with a continuum state having the same values for S, L, J,
and parity.

With energy-normalized radial functions, the autoionizing

width in Russell-Saunders coupling is

(4.52b;

(4.52c)

(4.53)
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(elec) (elec)

ar EKKSl_Imﬂ(ﬁ,L—,)EESL)P

e) = (ast Y2L+1)

where the summation goes over barred quantum-numbers, and the

continuum energy € satisfies the condition

e = EI + o~ Eg.r‘ .

Not all of the excited states whose energy lies above the first
ionization limit can satisfy these requirements. For example,
the (3p3d) 1Do term of Mg I, observed by Paschen,128 lies above
the 3s €/' ionization limit. However, there is no (3s €/) 1Do
continuum of odd parity with which the (3p3d) lDo can mix.
Consequently, the (3p3d) 1D° has only a slight autoionizing
probability, and the widths of spectral lines originating in
this term are comparable to widths of other non-autoionizing
lines. Other examples have been giyen in refs. 127.

The form of the matrix elements required for the calcu-
lation of autoionizing widths is identical with that of the
matrix elements required for calculating the energy of an ordi-
nary excited state, apart from the occurrence of a continuaus

index € in place of a discrete quantum-number n. Thus the

(4.54)

(4.55)
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widths can be expressed as the sum of squares of various

Slater-type integrals, including both "exchange" and "direct"
type integrals. The coefficients of these integrals, giving
the angular dependence of the matrix element, can be obtained

by use of standard procedures.115

l
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E. Resonance Parameters

Equation (2.91) gave the resonant part of the diagonal

elements of ]:

2 Ten (w2 B ey - 7 A (w)
- = i 4.56
E Wpe +W 43 (fk(w)/l) ( )
where the resonance parameters are
@) ()
A (w) = = *{ ba @) bw o> § /R (4.57a)
(» G) 2
BKCW) = 1{‘t«‘:{“’)‘z" ,t llk(w)| E/F"
(4.57b)
With incident €1 radiation, the first approximation to t(l)(w) is

Ka
(3) - | v o (E;r vtw-E ) <klowled &l D, 12D,
t, e = "-———-3 S" 3TwT ke ' b 112 (4.58)
&

This quantity vanishes unless the resonance state mixes, through
the matrix element {K|w|c >, with a continuum atomic state of

enerqgy Ec = EI + w. Near the resonance frequency w = wKI this

EY

Ka vanishes unless the dis-

condition means E = EK' That is,
c

(0)

K can autoionize.

crete state ¢
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The first approximation to t(r)(w), for €1 radiation, is

akK
P
[€)) Y A%
b, e = i ATID k). (4.59)

This quantity expresses the amplitude for a radiative tran-

sition between the ground state ¢£0) and the discrete excited-

(0)

state Pg -

From these expressions, it follows that the resonance para-

meters are:

A, (w) = 8w () <I\b,,\k>Ssce, tw-E){kloleyelD, 11>,  (4.60a)

c

2 |
B ) = 4n (aw) \(K“}.ll)ll - "'1\86(;1*“"5‘)<"‘“’|°><°'D/‘U> . ‘

(4.60b)
[4
For autoionizing transitions, in which PK A Féelec) , the |
|
parameters of Fano and COOper,45 discussed in Appendix A, are }
t‘a) Du LE>
I
Eo WSS(EIfw-E¢)<I'D,\°><C‘”“<>
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The parameters g and p2 depend on frequency only through the
variation of the continuum waveZfunctions with energy. This
dependence should be slight over the resonance.

For most purposes, one deals with target atoms whose
magnetic sublevels are degenerate and equally populated. One
then wishes a cross-section or refractivity that is summed over
magnetic quantum-numbers MK of the resonance states (gK = 2JK +1
sublevels) and averaged over both the photon polarization p
(3 values) and the magnetic quantum-number MI of the initial

atom (gI = ZJI + 1 possible values). This average yields the

resonant term

(21]‘ ) - Ek + i lk .,
F e +w + & (T f2) (4.62)

where

g l :
.
*
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My p My

-
g

MI)‘MK

(4.63)

ki
506, +w- €, Yk W \c><c\g.u>l .
(4.64)
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F. Background

The resonance profiles are superposed on a continuum
background which is the combined effect of distant resonances
and direct-scattering processes (Egs. (2.88)-(2.89) or (3.35)-
(3.36)).

Autoionizing lines overlie a photoionizatioJrontinuum

described by

2, 3 kR
C(w) = ~ -;L Jm[tu(w)] = .3-:-; S“EI*“"’E:) 2’-3;‘2' \41\0» \°>‘ .

Averaged over |, this yields the continuum-background cross-

section,

Cw) = ‘%v’ (w) SS(E, 1w-E,) \(Iﬂp’h;)]‘
¢ 9

:nr’aLS J_‘_'n .
dE,

®

The background for ordinary absorption lines comes from the

second term of Eq. (3.35), which contributes

gl
(1
Ol
+

2
3

wdwz Kavod W T (5y)

%I kaﬁ )‘
LEJ 3

(4.65)

(4.66)

(4.67)
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The background refractivity is given by the second and
third terms of Eq. (3.36). The summation over continuum states
comprises states with no photons (these must therefore be con-
tinuum atomic-states) and states with two identical photons

(which may have either discrete or continuum atomic-states).

The result i5129

{ 4 2
b, 1)1 <210, 14>1

EI*w-EJ EI {'u—(g“fl‘l’)
y é
LD, 1wt [<x 1D In)12 .
—_— +
Elﬂa:-(E.,f’b) EI +0 - ED
N7k

The single term with N = K in the third summation contributes

(4.68)

only a negligible portion of D_, so it may be dropped. The average

K

background then becomes the well-known Sellmeier formula,6

—

R - - M D w
Nw) -4 = Te0 k(@)
1
= N‘.S f‘i_/fa_cf__ + N fru .
(‘*’u) -w* (w;,.)’-w’
. d VoK

(4.69)
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G. Special Cases
a. Ordinary lines

It is instructive to apply these results to the prediction

or ordinary (non-autoionizing) line-profiles. In the absence

of autoionization, the resonance parameters of Eq. (4.57) become

| A wy =0, (4.70)
B - 4T (aw) it g >t . awe (22 \E_ O,
B, () 3 —a (&) = (4.71)

These expressions then yield the familiar results for

re:ffract:i.vity,sg_60

L Nt . (w._; ~w)f:n .
Wer  (wer ~w ) ¢ (T /2)? (4.72)

Nwy -1 =

and for the attenuation cross-section

F(wy = w_ ¥ g“‘ r"(») .

Wyr e - + (Toer/s)? (4.73)

Equations (4.72) and (4.73) describe only the portion of

n(w) or o(w) that comes from a particular resonance. Additional
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contributions come from all other resonances, as well as from
a background of direct reactions. For the lowest-lying resonant

state the cross section may also be written

2w 3 e .
@y Qi (g -w) ¢ (Fh)

Tw) =

Thus, the attenuation cross-section for the so-called "resonance-
line" of an atom, at the resonant frequency, takes the remarkably

simple va.luelslo

— aw 4 . Q) 9.
T ) e P 5 ' ?

while the integral over the absorption profile is approximately

A 2
[a‘cw)dw > avia e = (‘f) ‘%—:XK

For wavelengths much longer than the "resonance-line," w << Oy

3 .
[a Y]
and FK(w) X 20w fIK/ O <L Wpr? the cross section takes the

familiar Rayle igh-scatteringl3l frequency-dependence

4
Tew) = 47 (ufy ¥ % (_g ) -
T

(4.74)

(4.75)

(4.76)

(4.77)
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b. Double excitations

Since autoionizing levels lie above an ionization limit,

(0)

the zero-order resonance state Px

is doubly excited: it
differs from the zero—ofder ground state in two orbitals.
Photon transitions from the ground state to an autoionizing
state involve a two-electron jump. If the basis orbitals are

orthogonal, the matrix element (IlDu|K1> vanishes, and Eq. (4.59)

must be replaced by the more accurate equation

" 2 ln?3
£ wy = if{—; ST

} i dny{nlw k) 4 <Tiw iny <n 1D, k>
+

€ - €,
~ « (4.78)

+ 841\0,.\4><d\«rlk> ST ALY ZCIVSTSS

(Elfw) —Ed
d

(x)

When configuration mixing is slight, tak

is negligibly small,

and the profile parameters become

A, T o, (4.79)

1
o 4t ) \ S 5(C; +w ~E.) Skiarled el D IT> |, '(4.80)
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Such resonances appear as symmetrical transmission windows.

c. Zero-order mixing

The preceding formulas were given in terms of the zero-

order states ¢é0). Since these states may be mixtures of con-
figurations, it is useful to rewrite the formulas in terms of
basis states rather than zero-order states. The resonance

quantities then become, to lowest order:

E, = e + z (ki) (R }k) <R'Iw (k> ,

kk’

2

)

r(.un) > 4_(9}_.)’? (klR) ¢ kD AnD>
K ™

n

2
r(c(u) > g §(g tw-E.) \(th)ﬂdl\rhﬁ’ ,
K

4

) t(.n) ~ anau’? S 8(Eprw=-E KT (D 1) ) Lelwk> Ce lk)
= \l 3
ak

[ =

(4.81)

(4.82)

(4.83)

(4.84)
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VI ’11‘_'1;&;.3 z (ko) <I [D VB>,
Qk
. »n

The zero-order mixing-coefficients (K|k) may significantly
affect predictions. For example, the Z-expansion theory89
regards the 2snp and the 2pns configurations of helium as

degenerate to zero-order. The theory prescribes zero-order

states of the form
lanty = « [2smp> t plapns>

o4 ¢ F‘ =4

where o and B are the zero-order mixing-coefficients. The

autoionizing widths to the lsep continuum are

z
ry(w) (e) = 3n |« Lasnp|widsep> + g {3pnsin]is€pd
3ns
e 2
r":n_’ T am | o <3snp i) sG> — <apnslv|‘6er>\

This predicts a broad and a narrow series of autoionizing lines
. . +
converging to the degenerate 2s and 2p configuration of He . 1In

the same way, three distinct series of lines should converge to

(4.85)

(4.86)

(4.87a)

(4.87b)
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the 3s, 3p, 3d configuration of He+; each series should main-

tain a characteristic width.
Such series have been seen in helium, where the discrete-

state mixing has been discussed by Fano and Cooper.45

d. static fields

If the atom is influenced by static electric fields, the
Hamiltonian H acquires additional terms. These will be included
in the operator w. For example, a uniform electric fieldlg

requires
[ - » - .
w' o= E er;-¢ = D-E | (4.88)

while a point charge e' located at R requires
s

= ee’ . (4.89)
g -R|
7

The presence of a strong external field can significantly
affect the widths of an excited state which, though above the
ionization limit, is prevented from autoionizing by the preceding

selection rules. For example, a uniform electric field € in the
~

z-direction,
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can produce autoionizing transitions described by the matrix

element

o (6 -w +E)LSETN D 1K) e23VT'> (W, 10178) & |
2T+1

one then obtains a width having a quadratic dependence on

field strength,

e gy = = el Eksm: D NG.LYeR STI I
’ t————

2T+1 (257+)

with the sums again running over barred gquantum-numbers at
fixed energy €.

It is interesting to note that, although a perturbation w
may significantly influence the width of an autoionizing line,
' may have little effect on parameters AK and BK. For example,
suppose the initial state |T > has even parity and the state
|K > has odd parity, so that dipole transitions <1|Du|1< > are
allowed. If v' = el’:: . ,%’ then the autoionizing width receives

contributions [(K}v'|c >|2 to even states of the continuum.

But the quantity

(4.91
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{klw’led>ciD, 1T> (4.93)

is zero, since {K|v'|c > # 0 requires an even continuum and

<C'Du.II > # 0 requires an odd continuum.
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APPENDIX A: PROFILE PARAMETERIZATION
Other equivalent parameterizations of the function Q(E)
of Eq. (1.1) have also been used. Nuclear physicists often

b
11
use the form

+ A fes

() = o, () + | A AL
Q ot E-E, +: ()

while Fano44 has suggested

>
E)= @+ o, (£*¥4)
Q( . €*+1 s

e = (-8, D)/ (Vh).

In addition, Fano and cOoper45 introduced a parameter

Another common practice is to parameterize the scattering matrix

in the form

(A.1)

(a.2)

(aA.3)

(A.4)



(A.5)
with a phase shift
tan (6-4) = ‘E{g‘:’ ’ (A.6)
This leads to an attenuation cross-section with the energy
dependence
Qe) = —dm T = (L-e=28) + “'z(:"-scj‘; - (‘::")j"“"m. (A.7)

Since all these formulas give identical profiles, a comment
on the significance of parameterization (1.1) may be in order.
When parameter A is zero, the profile Q(E) is symmetrical

about EO’ Eq. (1.2). With B positive, this profile describes the

energy dependence of the photon absorption-coefficients near an
ordinary absorption line (in the absence of significant external
perturbations to the atoms).

When parameter A is not zero, the profile Q(E) displays

a dip on one side of E, and a peak on the other side. Physically,

0

this asymmetry arises from coherent interference between direct
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processes such as potential scattering, which provides a
background varying slowly with E, and the formation and decay
of a compound state, which varies sharply with E. This inter-
ference is sometimes seen in attenuation cross-sections, where
the dip in Q(E) appears as a "transmission window" near EO'
Such windows have been noted in the attenuation spectra of
s-wave neutrons, shown in Figure 2, and in photon transitions
to autoionizing states, shown in Figure 3. Symmetrical windows
occur if A = 0 and B is negative.

Empirically, the parameters of Eq. (1.2) have the following

significance. The area under the profile is

€)dE = B ¢+ }‘C(e)de. _
ffa .0
If we define a peak height H and a dip depth D (for a Lorentz
profile, D = 0) by the relationship

He Q(Fmax) - CS(Emax) (A.9)

D= C(Enin) — R (Bmin) (A.10)
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where E and E . are the energies of maximum and minimum
max min

Q(E), then

P (A.12)

Equations (A.1ll) permit estimation of profile parameters A and B
directly from plots of the profile. 1In the limiting case A = 0,
the width I'" is E - gmin’ while in the limiting case B = O,

I' is the full width at the half-maximum of Q(E).

The parameterization of Eq. (1.l) is readily compared with

that used by Fano:

CC/I-) B;“' (E'Eg)Ak _ o o (e,.qf’
T AY G s T % T % Tal (A.12)
The parameters are
€ = (E—E“)/ (T/2) s (A.13a)
(L))
= - € tar (A.13b)
q {C’) J




s I

. N \{:.‘, s J (A.13c)
P £Fa (T,‘/z) i
) *
2N Mt ) + ‘{:Ks
G—b - - ﬁ—F»" an (T /2) ’ | (A.13d)
(z) (2>
| tia |

2

P ) -ﬂ"'(“;u) dm ({:k&> . (A.13e)

These relations hold quite generally for the attenuation pro-
file near an isolated resonance; they include the effects of a
multichannel continuum and configuration mixing.

It should be noted that each of the formulas for Q(E)
involve four parameters, in addition to a background. The

present paper uses the real numbers A, B, E I', but clearly ;

OJ

the parameters q, ¢, E I" sexrve as well. For non-autoionizing

0’
transitions A vanishes and B and T are tied together. (B is

essentially the oscillator strength.) Thus, two parameters,

EO and I', suffice to fit ordinary absorption lines.

'
'
'
'
'
'
;
[
’
'
'
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Caption

FIG. 1. Relative cross-sections for reactions leading to

compound states of Siza. Projectile energy in center-of-mass

system, cross-sections in arbitrary units. (Data of S. G. Kaufman,
E. Goldberg, L. J. Koester, and F. P. Mooring, Phys. Rev. 88,

673, 1952).
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Caption

ra N

FIG. 2. Total neutron attenuation cross-section for sulfur.

(From R. E. Peterson, H. H. Barschall, and C. K. Bockelman,

{'
B

Phys. Rev. 79, 593, 1950).
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Caption

FIG. 3. Photon attenuation cross-section for neutral barium.

Cross—section in arbitrary units. (Data from W. R. S. Garton,
Harvard C ollege Observatory Shock-Tube Spectroscopy Laboratory

Scientific Report No. 6, November, 1965).
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